The role of abscisic acid and low temperature in chickpea (Cicer arietinum) cold tolerance. II. Effects on plasma membrane structure and function.
نویسندگان
چکیده
The frost hardiness of many plants such as chickpea can be increased by exposure to low non-freezing temperatures and/or the application of abscisic acid (ABA), a process known as frost acclimation. Experiments were conducted to study the response over a 14 d period of enriched plasma membrane fractions isolated from chickpea plants exposed to low temperature and sprayed with exogenous ABA. Measurement of the temperatures inducing 50% foliar cell death (LT50), and subsequent statistical analysis suggest that, like many plants, exposure to low temperatures (5/-2 degrees C; day/night) induces a significant level (P <0.05) of frost acclimation in chickpea when compared with control plants (20/7 degrees C; day/night). Spraying plants with exogenous ABA also increased frost tolerance (P <0.05), but was not as effective as low temperature-induced frost acclimation. Both pre-exposure to low temperatures and pre-treatment with ABA increased the levels of fatty acid desaturation in the plasma membrane (measured as the double bond index, DBI). Exposure of chickpea plants to low temperatures increased the DBI by 15% at day 4 and 19% at day 14 when compared with untreated control plants. Application of ABA alone did not increase the DBI by more than 6% at any time; the effects of both treatments applied together was more than additive, inducing a DBI increase of 27% at day 14 when compared with controls. There was a good correlation (P <0.05) between the DBI and LT50, suggesting that the presence of more unsaturated lipid in the plasma membrane may prevent cell lysis at low temperatures. Both pre-exposure to low, non-freezing temperatures and pre-treatment with ABA induced measurable changes in membrane fluidity, but these changes did not correlate with changes in LT50, suggesting that physical properties of the plasma membrane other than fluidity are involved in frost acclimation in chickpea.
منابع مشابه
ارزیابی تحمل به یخ زدگی ژنوتیپهای نخود (Cicer arietinum L.) در شرایط کنترل شده
The present experiment was aimed to evaluate the freezing tolerance of two cold tolerant (MCC426 and MCC252) and a cold susceptible (MCC505) chickpea genotypes. The study was carried out in a split-plot factorial design with three replications. Factorial arrangement of genotype and acclimation (acclimation and non acclimation) were imposed as main plot and temperatures (0, -4, -8, -12, 16, -20º...
متن کاملIdentification of Upregulated Genes under Cold Stress in Cold-Tolerant Chickpea Using the cDNA-AFLP Approach
Low temperature injury is one of the most significant causes of crop damage worldwide. Cold acclimatization processes improve the freezing tolerance of plants. To identify genes of potential importance for acclimatzation to the cold and to elucidate the pathways that regulate this process, global transcriptome expression of the chickpea (Cicer arietinum L), a species of legume, was analyzed usi...
متن کاملارزیابی تحمل به یخ زدگی ژنوتیپهای نخود (Cicer arietinum L.) در شرایط کنترل شده
The present experiment was aimed to evaluate the freezing tolerance of two cold tolerant (MCC426 and MCC252) and a cold susceptible (MCC505) chickpea genotypes. The study was carried out in a split-plot factorial design with three replications. Factorial arrangement of genotype and acclimation (acclimation and non acclimation) were imposed as main plot and temperatures (0, -4, -8, -12, 16, -20º...
متن کاملExpression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco.
The APETALA2 (AP2) domain defines a large family of DNA-binding proteins that play important roles in plant morphology, development, and stress response. We describe isolation and characterization of a gene (CAP2) from chickpea (Cicer arietinum) encoding a novel AP2-family transcription factor. Recombinant CAP2 protein bound specifically to C-repeat/dehydration-responsive element in gel-shift a...
متن کاملتأثیر تنش خشکی بر خصوصیات فتوسنتزی، ترکیبات فنلی و ظرفیت مهار رادیکالهای فعال ژنوتیپهای مختلف نخود (Cicer arietinum L.) در محیط آبکشت
Low photosynthetic rate is a major reason for yield reduction in drought-stress conditions. Therefore, a study was conducted in order to investigate the effect of drought stress on gas exchange, chlorophyll florescence, photosynthetic pigments, membrane stability, phenolic compounds and antioxidant capacity of leaves and their association with drought tolerance in 12 chickpea genotypes, which w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 57 14 شماره
صفحات -
تاریخ انتشار 2006